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An unconditionally stable Monte Carlo method for solving the frequency dependent 
equations of nonlinear radiation transport has been described previously. One of the central 
features of this method is the replacement of a portion of the absorption and reemission of 
radiation by a scattering process. While the inclusion of this scattering process assures the 
accuracy and stability of solutions regardless of local opacity values, it becomes time 
consuming when the local opacity is large. A procedure is derived for replacing a large 
number of local scattering events by a single advance of the coordinates and time of a 
particle. This procedure, developed by appealing to the theory of random flights, is integrated 
into the implicit Monte Carlo scheme and is invoked only when certain conditions are met. 
Numerical tests indicate that the random walk procedure can substantially improve the 
computational efficiency of the implicit Monte Carlo method without affecting its accuracy. 
This random walk procedure with suitable modifications should be applicable to the Monte 
Carlo solution of other transport problems involving large amounts of scattering. 

1. INTRODUCTION 

The implicit Monte Carlo method [ 1 ] provides accurate and unconditionally stable 
numerical solutions to a wide class of time-dependent nonlinear radiation transport 
problems, which can arise in astrophysics or in the description of high temperature 
laser produced plasmas. It furthermore applies equally well to optically thin or 
optically thick media, or any combination of the two, without compromising 
accuracy. Despite the unconditional stability of the method it can prove time 
consuming when applied to optically thick media. In this paper we describe a method 
that can improve its efftciency substantially under such circumstances. While the 
specifics of the method have been tailored to radiation transport applications, it 
should be applicable with suitable modifications to a variety of other transport 
problems that involve a significant amount of scattering. 
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In the explicit Monte Carlo solution of nonlinear radiation transport problem [2] 
radiation energy bundles are generated from the local temperature dependent emission 
sources and followed to extinction either by absorption or leakage from the system. 
Energy changes in the radiation field are subsequently balanced against those of the 
matter. This method works well in optically thin media but due to its conditional 
stability requires unacceptably short time steps and fine spatial zoning for problems 
involving optically thick media. The limitations of the explicit scheme are well 
known. 

In the implicit Monte Carlo scheme, on the other hand, a fraction of the absorption 
processes are replaced by scattering events, which represent the absorption and 
reemission of radiation; the longer the duration of the integration time step At and the 
larger the local Planck mean absorption coefficient the greater is the fraction. In 
addition to unconditional stability this scattering process provides a number of other 
calculational advantages, which include near balance between emission and 
absorption in optically thick media, economy of source particles, good statistics, and 
accurate spatial definition of sources. 

Despite these advantages computational efficiency can suffer when a large number 
of scattering events is required to transport radiation particles across regions of high 
opacity. In such situations one would like to be able to simulate the resulting complex 
flight paths by a simple random walk algorithm, based on the statistical properties of 
the scattering process [3]. 

In this paper we shall derive such a random walk procedure capable of 
representing a large number of scattering steps by a single advance of the coordinates 
and time of a particle. The procedure is valid for frequency-dependent problems, but 
frequency plays a role only insofar as frequency-averaged diffusion and absorption 
coefficients are employed in the random walk procedure. The nature of the random 
walk procedure is such that it can be invoked anywhere within the geometry of the 
problem, if the right conditions are met. Thus there is no need to consider separate 
“diffusion” and “transport” regions. Improvements in efficiency resulting from the 
random walk procedure can be expected to be highly problem dependent. However, 
for the illustrative example included in this paper employing random walk can cut 
problem running times by a factor of 8. 

The paper is organized as follows: The basic ingredients of the implicit Monte 
Carlo method are reviewed in Section 1. The emphasis here is on the working 
equations and procedures. For derivations the reader is referred to [2]. The statistical 
properties of the random flights of particles peculiar to the implicit Monte Carlo 
method are derived in Section 3. These properties are used to derive a diffusion 
equation that governs the random flights in the limit of a large number of collisions. 
In Section 4 the statistics of the random flights are used to derive a procedure for 
shortening the work involved in a practical implicit Monte Carlo calculation. Criteria 
for applying the procedure are also stated. The treatment of absorption for particles 
undergoing random flights is derived in Section 5. Numerical results comparing pure 
implicit Monte Carlo, implicit Monte Carlo combined with random walk, and 
multigroup diffusion theory are presented in Section 6. 
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2. REVIEW OF THE IMPLICIT MONTE CARLO METHOD 

The basic equations the method is intended to solve are 

b$=jj u,I, dv dp - c 
I( o,B, dv dp + S. (lb) 

The first equation is the radiative transfer equation under the assumption of local 
thermodynamic equilibrium, where I, is the specific intensity, B, is the specific 
intensity of a black body, and u. is the frequency dependent macrosopic absorption 
cross section. The second equation is the equation of material energy conservation, 
where b(r) = pc, represents the material specific heat. The first two terms represent 
radiation absorption and emission rates and S represents an arbitrary source 
function. 

The implicit Monte Carlo procedure for solving Eqs. (la) and (lb) numerically is 
based on the following set of equations derived in [ 1 ] for advancing the radiation 
field and material temperature from time t” to time t”+‘: 

= + (1 -fM,W~) jj o,.I,,dv’d~‘+~~u,b,u:+~(l -f)(u,b,/u,)SY, 

(24 

T”+’ = T” + b-‘(T)f 

0:: =fu, 3 

us,= (1 -f)u, 

f= l 
1 + apcdtu, ’ 

24, = aP, 

b, = B,u;‘, 

(2b) 

PC) 

(24 

(2f) 

cw 

up = b,u, dv, 
1 (2h) 

b= ($) ($$-I = 4b-l(T) aT3, 

At = t”+ 1 - tn. (3) 
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Here u, is the equilibrium radiation energy density, b, is a normalized Planck 
spectrum, up is the Planck mean cross section, a is a centering parameter that has the 
value 0 for a completely explicit treatment and 1 for a completely implicit treatment, 
and S’ is the source term appropriately time-centered. The quantity /3 = 4ur/bT is a 
measure of the ratio of energy in the equilibrium radiation field to internal energy in 
the matter. For simplicity Eqs. (1) and (2) have been written for one-dimensional slab 
geometry, but this does not affect the generality of the discussion. It is assumed that 
space has been discretized into zones and that the temperature T refers to a typical 
spatial zone over which temperature and any function of temperature are to be 
regarded as constant. Unless otherwise indicated the quantities in Eqs. (2a)-(2j) that 
require time centering refer to time t = t”. 

The transfer Eq. (2a) differs from Eq. (la) by the replacement of a fraction (1 -f) 
of the emission source term by an isotropic energy conserving scattering source and 
by the division of the true absorption coefficient u, in Eq. (la) into an absorption 
part a: =fu, and a scattering part o”, = (1 -f) u, that appear in Eq. (2a). 

The scattering process in Eq. (2a) has the physical significance of absorption and 
reemission of radiation, which is made plausible by the observation that radiation 
emerges from scattering with a normalized emission spectrum uvbJup. For an 
implicit treatment the scattering terms assume increasing importance as the product 
pAtup increases. This is as it should be, since for large At and/or strong absorption it 
becomes highly probable that any radiation emitted during the current integration 
cycle will have undergone absorption and reemission at least once. For an explicit 
treatment, on the other hand, the scattering terms disappear from Eq. (2a) and it is 
no longer possible to account for the possibility that reemission can follow the 
absorption of radiation during a cycle time At. Thus, quite apart from stability 
considerations, an explicit treatment would be expected to give accurate solutions 
only for values of At sufficiently small to strongly limit the amount of absorption that 
can take place in one cycle. 

Finally, Eq. (2b) expresses a material energy balance, which equates the gain in the 
internal energy of matter with the difference between the radiation energy absorbed 
and the radiation energy emitted during the time At. The factor f has the effect of 
excluding from the matter energy balance absorbed radiation that has been 
reradiated. This has a calculational bonus. Near equilibrium the right-hand equation 
(1 b) involves small differences between large sources and sinks, a situation inherently 
difficult to treat by Monte Carlo. In Eq. (2b), the effect of this noise source is 
reduced by the factor f, often by orders of magnitude. 

A Monte Carlo solution [2] of Eqs. (2) requires generation of a population of 
radiation source particles that correspond to the nonscattering source term on the 
right side of Eq. (2a). These particles should be distributed uniformly in direction and 
uniformly in time over the interval At. The total energy weight We for source particles 
generated in a particular zone should be 

We = [fiu,u; + (1 -f) Sy] At Ax, W 
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and their frequencies should be determined by sampling the distribution cr, b”/o, 
appropriate to the zone in question. It is essential for the spatial sampling of source 
particles within a zone to reflect the spatial gradients of u,, if transport into optically 
thick materials is to be calculated accurately. One such spatial sampling scheme 
involves selecting x values for particles in the kth zone, where xk- i < x < xk, from 
the unnormaized spatial distribution 

I+(X) = const. x [u$+, + ock+l -G-1)1/(xk-xk-l)? (3b) 

where ufk is the constant value of aT4 in the kth zone. A more accurate scheme that 
has been successfully implemented employs a quadratic spline representation of the 
zone to zone temperature variation [4]. Since up is a rapidly varying function of 
temperature, it is also essential to employ in Eqs. (2) and (3) values of up that are 
extrapolated to a time consistent with the assumed value of a; for example, if = 1, u, 
should be extrapolated to t”’ *. 

Once generated, source particles are tracked to escape or census. Particles that 
survive to census are used along with source particles in succeeding cycles. The 
energy weight of all particles is attenuated by the factor exp(-ots), where s is the 
track length between events, and the number of particles is reduced at census by a 
scheme that favors the retention of only highest weight particles. The energy lost by 
particles is accumulated during the cycle by zone and at the end of the cycle these 
totals are added to the material internal energies for the appropriate zones, and the 
zone temperatures are advanced in accordance with Eq. (2b). Since b(T) is a function 
of temperature, the upgrading of temperature by Eq. (2b) requires an iterative 
procedure, if energy is to be strictly conserved. 

The fully explicit form of calculation clearly involves less computation per cycle 
than the implicit scheme, since reemission scattering events are eliminated. The fully 
explicit scheme, however, can be expected to work stably only if At < min(t,), where 
r, z (&a,)-’ is the time for equilibration between matter and radiation, and min 
signifies the minimum value for all zones. This condition can be extremely restrictive 
if the problem contains even the slightest amount of high opacity material. Thus, 
many more cycles are required to complete a problem for the explicit scheme and the 
overall time to complete a problem can be must greater. 

The fully implicit form of Eq. (2) with a = 1, on the other hand, removes all 
restrictions on At for a stable solution and makes it possible to calculate transport in 
optically thick media with practical length time steps. More important, the implicit 
method makes it possible to continue a solution from a transparent region into a 
high-opacity region in a rigorous and self-consistent manner. The scattering terms in 
Eq. (2a) not only ensure stability but also enhance accuracy by giving accurate 
spatial definition to the emission sources. The latter feature reduces the sensitivity of 
calculational results to zone size. A further advantage of the implicit method is that 
since particles are, in effect, reused through the effective scattering process census, 
lists can be drastically reduced below those required for explicit calculations. 

Despite these advantages of implicit Monte Carlo, the cost of performing the 
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required scattering events by analog Monte Carlo can become quite onerous when 
f 4 1 and crD is large. When a large number of scattering events is likely to take place 
before census or a boundary crossing, it would be desirable to substitute a single 
diffusion-random walk event for the complex scattering chain. This does not imply 
that the problem should be divided into pure transport and diffusion regions. On the 
contrary, the decision to “shift gears” between transport and random walk should be 
based on a general set of conditions that can apply anywhere in space and time. This 
would allow both particles and zones to change their character with time. 

3. STATISTICS OF A RANDOM CHAIN OF SCATTERING EVENTS 
REPRESENTING THE ABSORPTION AND REEMISSION OF RADIATION 

In this section we derive a set of statistical relationships that characterize the 
random walk embodied in Eq. (2a). We consider an ensemble of particles that 
undergo a sequence of isotropic scattering events described by the scattering terms of 
Eq. (2a). The effects of absorption are ignored here but can be treated separately by 
an appropriate exponential attenuation along each flight path. This will be the subject 
of Section 5. The scattering cross section 

a”, = (1 -f) U” (4) 

is assumed to be independent of position. It is also assumed that the initial direction 
of a particle is isotropic and that the initial and scattered frequencies are distributed 
according to the normalized probability density function 

f(v) = u,b,b,. (5) 

The random flight path for a particular particle of the ensemble is illustrated in 
Fig. 1. 

The particle’s displacement r(N) from its initial position following N collisions can 
be written 

r(N)= t Ri, 
i=l 

(6) 

where each of the individual displacements Ri is statistically independent but 
otherwise distributed in the same manner. Note that the vectors Ri originate at the 
position of the collision numbered i - 1. A statistical description of the random walk 
requires a calculation of the second moment 

(r*(N))= i 5 (Ri- Rj)= 5 (Rf)=N(R*), 
i=l j=l i=l 

(7) 

where R is a random variable representing the displacement of a particle between 
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FIG. 1. Random walk involving 6 scattering events. The vector r(6) represents the total 
displacement of the particle at the 6th collision. 

isotropic scattering events with cross section o”, and scattered frequency distribution 
f (VI* 

In order to calculate (R’) and the expectation values of other functions of R we 
shall need to know the joint distribution function S(R, v), where f(R, v) dR dv is the 
probability that a particle will scatter into frequency v and travel a distance R before 
its next collision. Let f(R 1 v) represent the conditional probability that a particle with 
frequency v will travel a distance R before undergoing a collision. From elementary 
collision theory we must have 

f (R ) v) dR = exp(--aS,R) dR. 

From the definition of a joint probability distribution 

f(R, v) =f(rI v)f(v) = exp(-aS,R) ( “:r”‘)) . 

The expected value (g(R)) for some general function of R is 

(g(R)) = lam dvloa g(R)f(R, v) dR = lam dv yi” g(R) exp(-uS,R) dR. 
0 

For example, 

(8) 

(9) 

(10) 

(11) 

where use has been made of Eq. (4). Thus, the mean distance travelled between 
collisions is a;‘/(1 -f) or A,/(1 -f), where 1, is the Planck averaged mean free 
path. Correspondingly, the mean time r, between collisions is (R)/c or 

rc= (l-;)upc = 1, 
Cl---f)c’ (12) 
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Let us now compute the second moment (A ‘). From Eq. (11) we have 

(R2)=jrndv$jorn R 20~ov exp(-a”, R) dR 
0 

2 
I 

md,,fitr= 2 
= (1 -f)’ up 0 U” (1 -S)’ (TPcrR ’ (13) 

‘where the mean free path a;’ is computed as the average of a;’ over a normalized 
Planck distribution. This computation, as the subscript R indicates, is suggestive of 
the Rosseland mean free path, computed as cr;‘, averaged over the frequency 
distribution L2?,(7’)/8~. The cross section u, is sometimes referred to as the Planck 
reciprocal mean cross section, or simply, the reciprocal mean cross section. 

Returning to Eq. (7) we have 

(r2(N)) = W2) = (1 m;;upu, * 

This result can now be used to calculate a diffusion constant D. In the limit of a large 
number of collisions N, the probability density function for the distribution of a 
particle’s coordinates becomes [ 5 ] 

1 
‘h N, = (2,q~ 2)/3)3/2 exp(-3r2/2N(R 2>>7 (15) 

where r = (x, y, I). The above expression can be identified as the solution of the 
diffusion equation 

s= DVzw, (16) 

for an unbounded medium, subject to the initial condition 

The latter solution is 

v(r, 4 = a(r). (17) 

Comparing Eqs. (15) and (18), one obtains 

N(R ‘) = 6Dt. 

If we identify 

(19) 

(20) t=Nr,, 
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D can be expressed as, 

D=(R2)/6q=c/3(1 -f)a,, (21) 

where use has been made of Eqs. (12) and (14). When large numbers of collisions are 
involved, one can obtain the probability density function for the scattered particles by 
solving Eq. (16) directly without further reference to the details of the collisions. 

4. APPLICATION OF RANDOM FLIGHT STATISTICS TO 
IMPLICIT MONTE CARLO 

Having derived the necessary statistical properties of the random flights, we now 
develop a random walk procedure for shortening the work in implicit Monte Carlo 
transport. We first determine criteria that must be satisfied before the random walk 
procedure can be invoked. Since the particles considered in Section 3 were distributed 
uniformly in direction and in frequency according to the emission function in Eq. (5), 
we can include only source particles, or nonsource particles that have undergone at 
least one collision in the zone of interest. Particles that enter the zone of interest and 
pass right through without a collision need not be considered. These three possibilities 
are illustrated in Fig. 2. 

We shall further restrict our attention to random flight paths that are confined to 
some limited spatial region contained entirely within one zone. For simplicity we 
assume this region to be the largest sphere, with radius R,, centered at the starting 
position of the particle that can tit inside the zone (see Fig. 3). In order to aply 
diffusion theory to random flights it is necessary for a sufficient number of scattering 

FIG. 2. Three classes of particles that are considered in applying statistics of random flights to 
implicit Monte Carlo radiation transport: (a) particle generated within zone from emission source, (b) 
scattered particle representing absorption and reemission, (c) particle generated in another zone that 
passes through without absorption and reemission scattering. Only particles in classes (a) and (b) need 
be considered for the application of random walk theory. 



RANDOM WALK PROCEDURE 517 

FIG. 3. Random walk theory is applied to random flight paths that are confined to a limited spatial 
region. For the example depicted here the region is a sphere of radius R, tangent to one zone boundary. 
Two scattering cases are shown: (a) inside sphere (b) outside sphere. If R, > 1, and case (a) applies, 
random walk theory is invoked. 

events to take place. While the following heuristic criteria do not rigorously guarantee 
the applicability of diffusion theory, they have in practice led to very good results: 

d coL = Iln uI/u”, c R,, 

(22) 
(23) 

where dCOL is the distance to the next collision and u is a random number distributed 
uniformly in the interval 0 to 1. The first criterion guarantees that the particle will 
move at least one “Rosseland” mean free path within the sphere. Since 1, tends to be 
much less than 1,, and 1, is the mean distance between collisions, condition (22) 
could imply many collisions. The second criterion guarantees that the particle with its 
current frequency will collide inside the sphere at least once. If neither criterion is 
fulfilled, the particle is tracked by the conventional rules of Monte Carlo transport. 
The possible outcomes are shown in Fig. 4. 

As pointed out in Section 3, the probability density for the position of a particle is 
governed by Eqs. (16) and (17) in the limit of a large number of collisions. The 
solution (18), however, is valid only for an unrestricted set of random walks in an 

Possible 
random 

Transport Transwrt walk Random walk 

t 

FIG. 4. Procedure for combining random walk with implicit Monte Carlo allows for either analog 
transport or random walk, depending on whether certain criteria are met. 
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infinite medium. We are interested in the probability density governing a more 
restricted class of random walks that terminate before the particle can leave the 
confines of the sphere in question. The latter probability distribution can be deter- 
mined, if we impose a perfectly absorbing barrier at the surface of the sphere. We 
must, therefore, solve Eq. (16) subject to the boundary condition 

‘V(r=R,,t)=O, (26) 

which implies that particles arriving at the surface of the sphere are incapable of 
further displacements. Application of Eq. (16) with the boundary condition (26) 
requires one approximating assumption, namely, that the diffusion constant D, 
derived as an average over an infinite range of distances between collisions applies 
when the collisions are confined to the interior of the sphere. Again, this will be a 
good approximation for those chains involving a large number of collisions, which 
condition (22) and (23) were designed to select. 

The solution of Eq. (16) subject to initial and boundary conditions (18) and (26) 
can be expressed in the form 

(27) 

The probability PR(f) of a particle remaining entirely within the sphere for a time t is 

Pa(f) = 27c 1”” y(r, t) r dr, 
JO 

whereas the probability of the particle arriving at the surface of the sphere and 
terminating its random walk is 

Pi = 1 - PR(r) = 1 - 27~ I”” t&r, t) r dr. 
0 

(29) 

Equations (27)-(29) form the basis of the Monte Carlo random walk procedure, 
which is invoked when conditions (23) are satisfied. The first step is to determine 
whether the random flight chain has terminated with the particle reaching the surface 
of the sphere before census time, or whether the flight chain will be continued into the 
next integration cycle. (In the latter case the particle is moved to a new position in 
the sphere and retired to census.) One of these possibilities is decided by the outcome 
of 

0 < 24 <~&cm) particle reaches surface before census, (304 

P&cm) < 24 G 1 particle still in sphere at census. Pb) 

The comparisons (30) are best accomplished using a one-dimensional table of values 
of P&). 
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If the more likely of the two outcomes (30a) is satisfied, the actual time t, at which 
the random flight chain is terminated is found by solving the equation 

P&T) = 24 (31) 

by table lookup, where u is the same random number that satisfies Eq. (30a). The 
clock of the particle is then advanced to t + t,, and the new position of the particle is 
selected from a distribution that is uniform on the surface of the sphere, r = R,. 

The random walk is completed when the particle is assigned a new frequency and 
direction. We recall that the statistical analysis of Section 3 leading to a diffusion 
equation was based on observations of particles immediately following collision 
events. This would lead us to conclude that in the limit that diffusion theory 
accurately describes the random flights, the frequencies and directions of the 
terminated particles should be distributed in the same manner as scattered particles, 
that is, their frequencies should be distributed according to Eq. (5), and their 
directions should be distributed uniformly in solid angle. However, it is necessary to 
bear in mind that any particle that reaches the sphere by a random scattering chain 
must have undergone its last collision inside the sphere. Thus it is more accurate to 
assign the new particle direction from a cosine distribution about the local normal to 
the sphere. The accuracy of this assumption has been empirically verified by com- 
putation. 

If condition (30b) is satisfied, the particle is given a new direction and position and 
advanced to census. The new direction is selected from a uniform distribution and the 
new position is uniformly distributed on the surface of the sphere r = R, , where R, is 
computed by solving the equation 

2x 
i R’ v(r, k,,) r dr = ~‘p,(t,,,), 

0 
(32) 

where U’ is a new random number. Equation (32) is best solved by means of a two- 
dimensional table lookup. 

5. TREATMENT OF ABSORPTION 

Scattering can be treated independently of absorption, provided that at the end of a 
multiple collision path the radiation particle weight is multiplied by the factor 

IV, = fi exp(--fo,Ri), 
i=l 

(33) 

where R, is the length of the ith segment between scattering events, and Ui = u, for 
the frequency appropriate to the same segment. It will be assumed that all of the 
collisions referred to in Eq. (33) take place within the same zone. 
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We now wish to calculate the ensemble average 

(w,)=($ eXp(-AR,) 
i=l ) 

= (exp(-.u,R))N, (34) 

where use is made of the statistical independence of each path segment. From Eq. 
(11) we have 

(exp(--fa,R))N = li,” 9 dv jr exp(-a$)( 1 -f) uU dR ! N 

= (1 -f)” 

= exp[Nln(l -f)] 

If use is made of Eqs. (21) and (13), one can write Eq. (35) as 

(exp(--fo,R))N = exp( (1 -f) ln( 1 -f) u,ct}. 

This means that the weight factor (W,) can be expressed as 

( W,) = exp(--c&t), 

where t is the time elapsed in the random walk and 

a&= (1 -f)ln(l -f)-’ up. 

For f < 1, Eq. (38) can be approximated by 

d&f z fup. 

(35) 

(36) 

(37) 

(38) 

(39) 

6. NUMERICAL EXAMPLES 

It is assumed that radiation from a 1.0 keV blackbody impinges on a slab of lead 
from one side. The incident radiation is distributed in frequency according to a 
Planck spectrum and in direction with a cosine distribution about the normal to the 
slab. Figures 5 and 6 show the net energy penetration into the slab as a function of 
time under the assumption that the blackbody is turned on instantaneously at t = 0. 

Displayed in Fig. 5 are results for diffusion theory, pure implicit Monte Carlo, and 
inplicit Monte Carlo combined with the random walk procedure previously derived. 
The diffusion calculation was carried out with 50 frequency groups, while the cross 
sections employed with both Monte Carlo calculations were defined by 128 groups. 
The discrepancy in the number of groups is not considered to be important. Each 
method was applied with a zone density of 32 zones per mm of penetration depth, 
which is sufficient to ensure accurate results. Monte Carlo results were obtained with 
a quadratic spline representation of the temperature [4], which in turn was used to 
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0 0.5 1.0 1.5 2.0 

Time (nsec) 

FIG. 5. Radiation energy penetration into a slab from blackbody source on one side, calculated as a 
function of time with multigroup diffusion theory, implicit Monte Carlo, and implicit Monte Carlo with 
random walk. Fine zoning is employed with 32 zones/mm. 

compute the spatial dependence of the source terms in Eqs. (2a) and (2b). The 
number of particles at the end of the problem was of the order of 1000. 

The three methods give results that are in very good agreement. For the implicit 
Monte Carlo-random walk combination, however, the small zone size prohibits 
invoking the random walk procedure often enough for a substantial reduction in 
running time. This can be seen from Table I, which gives comparative running times 
as a function of zone density for the two Monte Carlo methods. For Fig. 5 the 
reduction in running time is about 20 per cent. 

Figure 6 shows results for implicit Monte Carlo with and without the random walk 
procedure for 4 zones/mm. The results in Fig. 6 display a somewhat higher degree of 
statistical variation than their counterparts in Fig. 5. This behavior is representative 
of a general tendency observed in the series of calculations for increased statistical 
noise in the calculated energy deposition to accompany an increase in zone size. The 
agreement between the two Monte Carlo methods, nonetheless, is quite good 

t 
e 5 

k.2 

% 
z 
8 
c 

‘i 1 

ii 
s 
20 

0 0.5 1.0 1.5 2.0 

Time (nsec) 

FIG. 6. Radiation penetration into a slab as a function of time for coarse zoning (4 zones/mm). 
Plotted are results for pure implicit Monte Carlo and implicit Monte Carlo-random walk combination. 
The latter results in a reduction of running time by factor of 8.6. 
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TABLE1 

Comparison of Running Times as a Function of Zone Size 
for Problem of Radiation Penetrating a Lead Slab 

Zone Density IMC IRW 
(zones/mm) (min) (min) IMC/IRW 

32 1.74 6.43 1.2 
16 6.69 3.07 2.2 
8 5.43 1.25 4.3 
4 6.34 0.62 8.6 

Note. Given are running times for pure implicit Monte Carlo (IMC) and implicit Monte Carlo 
combined with random walk (IRW). 

considering the statistical nature of the results. The inclusion of the random walk 
procedure for the case of Fig. 6 reduces running time by a factor of 8.6. 

One would expect the coarseness in zone size to reduce the accuracy of the results 
in Fig. 6 relative to those in Fig. 5. Actually, the differences between Figs. 6 and 5 
are not appreciable and may be attributed at least in part to statistics. The need for 
relatively coarse zoning to increase the effectiveness of the random walk procedure 
makes it all the more important to accurately characterize the spatial dependence of 
the source terms in Eqs. (2a) and (2b). 

7. SUMMARY AND CONCLUSION 

We have derived a random walk procedure capable of representing a large number 
of scattering events by a single advance of the coordinates and time of a Monte Carlo 
particle. Such scattering events represent the absorption and reemission of radiation. 
This random walk procedure can in turn be integrated into the general implicit Monte 
Carlo method of radiation transport without compromising its accuracy in situations 
where strict transport theory is required. 

In optically thick regions of a problem where diffusion theory is valid the random 
walk procedure can significantly increase the computational efficiency of the implicit 
Monte Carlo method without loss of accuracy. Significant increases in computational 
efficiency due to the random walk procedure, however, require zoning that is 
sufftciently coarse for the random walk option to be invoked frequently. In order to 
achieve accurate results and computational efficiency at the same time it is thus 
necessary to represent the spatial dependence of radiation source terms as accurately 
as possible. 
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